miércoles, 4 de enero de 2012

Intervalo de confianza

En estadística, se llama intervalo de confianza a un par de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa con 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.

El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más posibilidades de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumentan sus posibilidades de error.

El siguiente video les puede servir de ayuda para utilizar minitab:

Técnicas de Muestreo

Muestreo es la técnica para la selección de una muestra a partir de una población..Al elegir una muestra se espera conseguir que sus propiedades sean extrapolables a la población. Este proceso permite ahorrar recursos, y a la vez obtener resultados parecidos a los que se alcanzarían si se realizase un estudio de toda la población.

Cabe mencionar que para que el muestreo sea válido y se pueda realizar un estudio adecuado (que consienta no solo hacer estimaciones de la población sino estimar también los márgenes de error correspondientes a dichas estimaciones), debe cumplir ciertos requisitos. Nunca podremos estar enteramente seguros de que el resultado sea una muestra representativa, pero sí podemos actuar de manera que esta condición se alcance con una probabilidad alta.

Los siguientes videos nos complementa el tema:



Definiciones

Inferencia Estadística.- Se refiere a establecer las características de una población o proceso con base en la información contenida en una muestra.

Estadístico.- Medidas o funciones de los datos muestrales que ayudan a caracterizar la distribución de tales datos

Distribución de una variable aleatoria X.- Relaciona el conjunto de los valores posibles X con la probabilidad asociada a éstos.

Estimador puntual.- Estadístico que estima el valor de un parámetro.

Error Estándar.- Desviación estándar de un estadístico que ayuda a determinar que tan precisas(exactas) son las estimaciones que realizan con tal estadístico.

Intervalo de Confianza.- Forma de estimar un parámetro en la cual se calcula un intervalo que indica con cierta seguridad un rango donde puede estar el parámetro.

Hipótesis nula Ho.- Afirmación acerca del valor de un parámetro poblacional que se considera válida para desarrollar el procedimiento de prueba

Hipótesis Alternativa Ha.- Afirmación que se aceptará si los datos muestrales proporcionan evidencia de que la hipótesis nula es falsa

Estadístico de prueba.- Fórmula que permite calcular un número a partir de los datos y de Ho. La magnitud de este número permite discernir si Ho se rechaza o no.

Región de Rechazo.- Conjunto de posibles valores del estadístico de prueba que llevan a rechazar Ho

Región de Aceptación.- Conjunto de posibles valores del estadístico de prueba donde no se rechaza Ho.

Hipotesis Bilateral.- Es cuando la hipótesis alternativa es del tipo “no es igual” e incluye a los casos “mayor que” y “menor que” el valor que respalda Ho

Error Tipo I.- es cuando se rechaza una Ho que es verdadera

Error Tipo II.- es cuando se acepta una Ho que es falsa

Potencia de Prueba.- es la probabilidad de rechazar Ho cuando es falsa

Significancia predefinida.- Es el riesgo máximo que se está dispuesto a correr con respecto al error tipo I

Significancia calculada (valor p).- Es el área bajo la distribución de referencia más allá del valor del estadístico de prueba.

Muestras pareadas.- Son aquellas en los que los datos de ambas poblaciones se pueden ver como pares porque tienen algo en común y no son independientes.

viernes, 16 de diciembre de 2011

Distribuciones de Probabilidad La Normal

Entre las distribuciones de probabilidades más importante tenemos a la distribución NORMAL o Curva de Gauss, el siguiente video nos explica en que consiste dicha curva: